Novel, strained 10b,10c-dihydropyrenes bearing bulky $\mathbf{T M S C H}_{2}$ groups at the internal positions

Tsuyoshi Sawada, ${ }^{* a}$ Masaki Wakabayashi, ${ }^{b}$ Hiromi Takeo, ${ }^{b}$ Akira Miyazawa, ${ }^{\text {b }}$
Masashi Tashiro, ${ }^{c}$ Thies Thiemann ${ }^{a}$ and Shuntaro Mataka ${ }^{a}$
${ }^{a}$ Institute of Advanced Material Study, Kyushu University, 6-1, Kasuga-koh-en, Kasuga-shi, Fukuoka 816-8580, Japan
${ }^{b}$ Department of Molecular Science and Technology, Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-koh-en, Kasuga-shi, Fukuoka 816-8580, Japan
${ }^{\text {c }}$ Tohwa Institute for Science, Tohwa University, 1-1-1, Chikushigaoka, Minami-ku, Fukuoka-shi, Fukuoka, 815-0032, Japan

Received (in Cambridge) 8th December 1998, Accepted 5th January 1999

Abstract

Two novel, strained trans-10b,10c-dihydropyrenes, 9a-b, with internal, bulky trimethylsilylmethyl substituent(s) were synthesized. Their 14π-electron annulene systems were found to be distorted, as shown by X-ray crystallographic analyses and ${ }^{1} \mathrm{H}$-NMR and UV spectroscopy.

The functional groups at the internal positions in 10b, 10csubstituted trans-10b,10c-dihydropyrenes are influenced by the magnetic anisotropy due to the 14π-electron annulene system. They can be used to probe the aromaticity of these compounds. ${ }^{1-3}$ On the other hand, introduction of bulky substituents into the $10 \mathrm{~b}, 10 \mathrm{c}$-positions of dihydropyrenes ${ }^{4,5}$ may alter the aromatic character of the annulene system. One such substituent, in which the authors have been interested, is the trimethylsilylmethyl group, as it is bulky and it can also serve both as a protective group and as an activating group for further functional conversions. ${ }^{6,7}$ Here, the preparation of the two novel, strained dihydropyrenes 2,7 -di-tert-butyl-trans-10b,10c-bis(trimethylsilylmethyl)-10b,10c-dihydropyrene 9a and $\quad 2,7$-di-tert-butyl-trans-10b-trimethylsilylmethyl-10c-methyl-10b, 10 c-dihydropyrene $\mathbf{9 b}$ is described and their spectral properties are discussed.

From p-tert-butyltoluene 1, trans-10b,10c-dihydropyrenes 9a and 9b have been prepared in eight steps (Scheme 1). Wittig rearrangement of dithia[3.3]metacyclophanes $\mathbf{6 a}$ and $\mathbf{6} \mathbf{b}$, followed by Hoffmann elimination using potassium tert-butoxide in THF, gave 9 a (37%) and $\mathbf{9 b}(24 \%)$, respectively.
The structures of $\mathbf{9 a}$ and 9 b were analyzed by X-ray crystallography (Fig. 1 and 2). One measure of the distortion from planarity of the dihydropyrene periphery is the distance of the two carbons C2 and C7 from the plane containing the four carbon atoms (C3a, C5a, C8a, C10a) which are bonded to the internal position (Fig. 3).
In the case of non-symmetrical dihydropyrene $\mathbf{9 b}$, the average distance \dagger of the C 2 carbon atoms (A: C02 and B: C33 in X-ray) neighboring the TMSCH_{2} group from the plane C3a-C5a-C8a-C10a is $0.319 \AA$. The distance between C7 carbon atoms (A: C07 and B: C37 in X-ray) neighboring the methyl group and the plane is only $0.011 \AA$. The corresponding distance of the C2 carbon atom in $9 \mathbf{a}(\mathrm{C} 02)$ is $0.265 \AA$. For comparison, the distance in the trans-10b,10c-dimethyl-10b,10c-dihydropyrene is $0.117 \AA .{ }^{8}$ From this result, it can be seen that the dihydropyrene periphery is more distorted in the vicinity of the TMSCH_{2} group. The dihedral angle of $\mathbf{9 b}$ on the TMSCH_{2} side (C09-
\dagger The X-ray crystallographic structure of $\mathbf{9 b}$ showed two independent positions for $9 \mathbf{b}$ in the crystal lattice. Perhaps due to a crystal packing effect, 9b in these two positions shows slightly different structural parameters, which the author deemed not to be significant. Thus, forthwith in the discussion of the structural features of $\mathbf{9 b}$, the average value $\mathbf{9 b}-\mathbf{A} / \mathbf{9 b}-\mathbf{B}$ is used.

Scheme 1 Reagents and Conditions: i, NBS, benzoyl peroxide, 79\%; ii, $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{Mg}, 70 \%$; iii, $\mathrm{ClCH}_{2} \mathrm{OCH}_{3}, \mathrm{ZnCl}_{2}, 63 \%$; iv, (1) $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CS}-$ KOH , (2) $\mathrm{HCl}, 74 \%$; v, $\mathrm{KOH}-\mathrm{NaBH}_{4}$; vi, (1) n-BuLi, (2) MeI; vii, $(\mathrm{MeO})_{3} \mathrm{CH}, \mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$; viii, KOBu^{t}.
$\mathrm{C} 10-\mathrm{C} 10 \mathrm{a}-\mathrm{C} 01$) is 8° and that on the methyl side (C04-C05$\mathrm{C} 05 \mathrm{a}-\mathrm{C} 06)$ is only 1°. The corresponding angle in the symmetrical dihydropyrene $9 \mathrm{a}(\mathrm{C} 09-\mathrm{C} 10-\mathrm{C} 10 \mathrm{a}-\mathrm{C} 01)$ is 6°. These

Fig. 2 ORTEP View of $9 \mathbf{9}$.
results show that the dihydropyrene periphery of 9 a has a distorted structure, which looks like a step. The periphery of $\mathbf{9 b}$ has the slightly curved structure of a bow. The largest dihedral

Table 1 Bond lengths within the dihydropyrene periphery of 9a and 9b

9a: $R^{1}, R^{2}=\mathrm{CH}_{2} \mathrm{SiMe}_{3}$
9b: $R^{1}=\mathrm{CH}_{2} \mathrm{SiMe}_{3}, \mathrm{R}^{2}=\mathrm{Me}$

		$9 \mathbf{y}(\AA)$		
	$\mathbf{9 a}(\AA)$	A	B	Average
C1-C2	1.396	1.38	1.39	1.385
C2-C3	1.409	1.41	1.40	1.405
C3-C3a	1.383	1.36	1.42	1.390
C3a-C4	$1.404(\mathrm{C} 03 \mathrm{a}-\mathrm{C} 09)$	1.43	1.41	1.420
C4-C5	$1.390(\mathrm{C} 09-\mathrm{C} 10)$	1.39	1.36	1.375
C5-C5a	$1.396(\mathrm{C} 10-\mathrm{C} 10 \mathrm{a})$	1.37	1.39	1.380
C5a-C6	$1.386(\mathrm{C} 10 \mathrm{Ca}-\mathrm{C} 1)$	1.38	1.37	1.375
C6-C7	$1.396(\mathrm{C} 01-\mathrm{C} 02)$	1.39	1.42	1.405
C7-C8	$1.409(\mathrm{C} 02-\mathrm{C} 03)$	1.39	1.37	1.380
C8-C8a	$1.383(\mathrm{C} 03-\mathrm{C} 03 \mathrm{a})$	1.43	1.41	1.420
C8a-C9	$1.404(\mathrm{C} 03 \mathrm{a}-\mathrm{C} 09)$	1.36	1.37	1.365
C9-C10	1.390	1.41	1.41	1.410
C10-C10a	1.396	1.40	1.37	1.385
C10A-C01	1.386	1.42	1.43	1.425

Fig. 3 Distortion of dihydropyrene periphery of 9 a.
angle within the periphery of the trans-10b,10c-dimethyl$10 \mathrm{~b}, 10 \mathrm{c}$-dihydropyrene is $4^{\circ} .^{2}$ Thus, the dihydropyrenes 9 a and 9b, which have bulky TMSCH_{2} groups at the internal position(s), are clearly more distorted than the $10 \mathrm{~b}, 10 \mathrm{c}$-dimethyl$10 \mathrm{~b}, 10 \mathrm{c}$-dihydropyrene. ${ }^{2,8}$ It is interesting to note that, while 9 a has the larger mean deviation from planarity of its periphery, 9 b exhibits the largest single deviation. The bond angles (C10b-C19-Si01) in $9 \mathbf{a}$ and $\mathbf{9 b}$ are 126° and 125°, and the distance from the methylene carbon in TMSCH_{2} to the nearest carbon in the periphery is $3.39 \AA$ (C21-C01) in 9a and $3.41 \AA$ (average of C51-C31, C21-C01) in 9b, respectively. These results indicate the existence of a steric repulsion between the TMSCH_{2} groups and the dihydropyrene periphery.
The bond lengths within the dihydropyrene periphery of 9 a and $\mathbf{9 b}$ are given in Table 1. In the case of trans-10b, 10c-dimethyl-10b, 10c-dihydropyrene, ${ }^{9}$ bond alternation is almost absent around the perimeter, with bond lengths running between 1.388 and $1.398 \AA$. In the case of 9 a, the bond lengths of the dihydropyrene periphery run between 1.383 and $1.409 \AA$ and bond alternation is also almost absent. The same can be observed for $9 \mathbf{b}$ (1.38-1.42 \AA). These results indicate that the aromaticities of the dihydropyrene peripheries of $\mathbf{9 a}$ and $9 \mathbf{b}$ are intact, although the peripheries are distorted due to the steric repulsion of the TMSCH_{2} group.

The ${ }^{1} \mathrm{H}$-NMR chemical shifts of $\mathbf{9 a}, \mathbf{9 b}$, and of 2,7 -di-tert-

Table $2{ }^{1} \mathrm{H}$-NMR spectra of dihydropyrenes $\mathbf{9 a}, \mathbf{9 b}$ and $\mathbf{9 c}$ in CDCl_{3} at $23{ }^{\circ} \mathrm{C}$

9a: $\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{SiMe}_{3}$
9b: $R^{1}=\mathrm{CH}_{2} \mathrm{SiMe}_{3}, \mathrm{R}^{2}=\mathrm{CH}_{3}$
9c: $\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{CH}_{3}$

	ArH						
Compound	a	b	c		$\mathrm{Me}_{3} \mathrm{Si}$	SiCH_{2}	CH_{3}
$\mathbf{9 a}$	8.32	8.47	8.47	-0.98	-4.28	-	
$\mathbf{9 b}$	8.39	8.47	8.53	-0.95	-4.22	-4.08	
$\mathbf{9 c}$	8.46	8.54	8.54	-	-	-4.06	

Table 3 Maximal absorptions in the UV spectra of $9 \mathrm{a}, 9 \mathrm{~b}$ and $9 \mathbf{c}$ in cyclohexane

Compound	$\lambda_{\text {max }} / \mathrm{nm}(\log \varepsilon)$
$\mathbf{9 a}$	$670(2.3) 505(3.5) 395(4.1) 351(4.5)$
$\mathbf{9 b}$	$657(2.8) 490(3.9) 388(4.5) 346(4.8)$
$\mathbf{9 c}$	$644(2.8) 478(3.7) 383(4.1) 340(4.5)$

butyl-trans-10b,10c-dimethyl-10b,10c-dihydropyrene (9c) ${ }^{10}$ are given in Table 2. The aromatic protons were assigned by NOE techniques. The aromatic protons H_{a} of $\mathbf{9 a}$ and $\mathbf{9 b}$ show an upfield shift of 0.14 and 0.07 ppm , respectively, when compared to H_{a} of 9 c . The chemical shifts of H_{a} can be correlated with the number of TMSCH_{2} groups. It is expected that the distortion of the dihydropyrene periphery caused by TMSCH_{2} groups, influences the electron density at the H_{a} position. It must be noted that the electron donor capability of the TMSCH_{2} group to carbons C 10 b and C 10 c may have an added effect on the electron density.

In the UV spectra, $\lambda_{\text {max }}$ of $\mathbf{9 a}, \mathbf{9 b}$ and $\mathbf{9 c}$ are observed at 670 , 657 , and 644 nm , respectively. The bis- TMSCH_{2} substituted dihydropyrene 9a is distorted and looks like a step and the mono substituted dihydropyrene $\mathbf{9 b}$ is distorted like a bow. Thus, it is expected that the red shift of $\lambda_{\text {max }}$ seems to correlate with the degree of distortion of the periphery $(\mathbf{9 a}>\mathbf{9 b}>\mathbf{9 c})$. Again, an added effect may stem from the electron donor capability of the TMSCH_{2} groups.

The study of the reactivity of $\mathbf{9 a}$ and $\mathbf{9 b}$ is underway.

Experimental

All melting points are uncorrected. IR spectra were measured as KBr pellets. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were determined in CDCl_{3} at 270 MHz with a JEOL EX-270 instrument. UV spectra were measured on a HITACHI 220A spectrophotometer using cyclohexane as solvent. Mass spectra were measured on a JEOL JMS-01-SG-2 machine at 75 eV using a direct inlet system. Elemental analysis was performed on a YANAKO MT-5 instrument.

1-tert-Butyl-4-trimethylsilylmethylbenzene 3

A solution of 4-tert-butylbenzyl bromide $2(150 \mathrm{~g}, 0.7 \mathrm{~mol})$ in dry THF (200 mL) was added to a stirred suspension of chlorotrimethylsilane ($109 \mathrm{~g}, 1 \mathrm{~mol}$) and $\mathrm{Mg}(20 \mathrm{~g}, 0.8 \mathrm{~mol})$ in dry THF (100 mL) under an argon atmosphere at room temperature. After the reaction mixture was stirred under reflux for 3 h , it was poured into ice-water, and extracted with dichloromethane (300 mL). The combined extracts were washed with water, dried over anhydrous MgSO_{4}, and concentrated. The
residue was distilled under reduced pressure to give 3 (99.8 g , $0.45 \mathrm{~mol}, 70 \%$), bp $63-66^{\circ} \mathrm{C} / 0.9$ Torr (Found: C, 76.41 ; H, 11.10. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{Si}$ required $\left.\mathrm{C}, 76.28 ; \mathrm{H}, 10.97 \%\right)$; $\delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)-0.01\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right), 1.31(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.04(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{TMSCH}_{2}\right), 6.92\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J=8.2 \mathrm{~Hz}\right.$, arom. H), $7.24(2 \mathrm{H}, \mathrm{d}$, ${ }^{3} J=8.2 \mathrm{~Hz}$, arom. H); $m / z: 220\left(\mathrm{M}^{+}\right)$.

1-tert-Butyl-3,5-bis(chloromethyl)-4-trimethylsilylmethylbenzene 4

A mixture of 1-tert-butyl-4-trimethylsilylmethylbenzene 3 (2.2 $\mathrm{g}, 10 \mathrm{mmol})$ and chloromethyl methyl ether $(10.5 \mathrm{~g}, 130 \mathrm{mmol})$ was added to activated zinc chloride ($1.8 \mathrm{~g}, 13 \mathrm{mmol}$) under an argon atmosphere. After the reaction mixture was stirred under reflux for 2 h , it was poured into ice-water, and stirred for 30 \min. The reaction mixture was extracted with dichloromethane $(300 \mathrm{~mL})$. The organic phase was washed with water, dried over anhydrous MgSO_{4}, and concentrated. The residue was distilled under reduced pressure to give $4(2.0 \mathrm{~g}, 6.3 \mathrm{mmol}, 63 \%)$, bp $138-140{ }^{\circ} \mathrm{C} / 0.9$ Torr (Found: C, 60.95; H, 8.42. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{Si}$ required $\mathrm{C}, 60.55 ; \mathrm{H}, 8.26 \%) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.04(9 \mathrm{H}$, s, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right), 1.25(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 2.37\left(2 \mathrm{H}, \mathrm{s}, \mathrm{TMSCH}_{2}\right), 4.52(4 \mathrm{H}$, s, $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 7.25\left(2 \mathrm{H}\right.$, s, arom. H); m/z: $320\left({ }^{37} \mathrm{Cl}_{2} \mathrm{M}^{+}\right), 318\left({ }^{37} \mathrm{Cl}\right.$ $\left.{ }^{35} \mathrm{Cl} \mathrm{M}^{+}\right), 316\left({ }^{35} \mathrm{Cl}_{2} \mathrm{M}^{+}\right)$.

1-tert-Butyl-3,5-bis(mercaptomethyl)-4-trimethylsilylmethylbenzene 5a

A solution of thiourea ($500 \mathrm{mg}, 6.6 \mathrm{mmol}$) and 1-tert-butyl-3,5-bis(chloromethyl)-4-trimethylsilylmethylbenzene 4 ($950 \mathrm{mg}, 3.0$ $\mathrm{mmol})$ in ethanol $(15 \mathrm{~mL})$ was stirred under reflux for $1 \mathrm{~h} . \mathrm{A} 10 \%$ aq. NaOH solution $(5 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(20 \mathrm{mg}, 0.6 \mathrm{mmol})$ were added to the reaction mixture. Then, the mixture was stirred under reflux for another 1 h . The reaction mixture was cooled, neutralized with a 5% aq. HCl solution, and extracted with dichloromethane $(100 \mathrm{~mL})$. The organic layer was washed with water, dried over anhydrous MgSO_{4}, and concentrated. The residue was distilled under reduced pressure to give $\mathbf{5 a}(700 \mathrm{mg}$, $2.2 \mathrm{mmol}, 74 \%$) as colorless needles (hexane); bp $117^{\circ} \mathrm{C} / 0.5$ Torr, mp $48-51^{\circ} \mathrm{C}$ (Found: C, 61.57; H, 9.09. $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~S}_{2} \mathrm{Si}$ required $\mathrm{C}, 61.48 ; \mathrm{H}, 9.03 \%) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.39(9 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right), 1.29(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 1.55\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J=6.9 \mathrm{~Hz}, \mathrm{SH}\right), 2.35$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{TMSCH}_{2}\right), 3.69\left(4 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~S}\right), 7.16(2 \mathrm{H}, \mathrm{s}$, arom. H$) ; m / z: 312\left(\mathrm{M}^{+}\right)$.

6,15-Di-tert-butyl-9,18-bis(trimethylsilylmethyl)-2,11-dithia[3.3]metacyclophanes 6a, 6,15-di-tert-butyl-9-methyl-18-tri-methylsilylmethyl-2,11-dithia[3.3]metacyclophanes 6b

A solution of $\mathbf{4}(3.17 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathbf{5 a}(3.13 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{EtOH}(200 \mathrm{~mL})$ was added slowly to a refluxing suspension of $\mathrm{KOH}(2.10 \mathrm{~g}, 32 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(0.56 \mathrm{~g}, 14.9 \mathrm{mmol})$ in $\mathrm{EtOH}(2 \mathrm{~L})$. After the reaction mixture was stirred under reflux for another 2 h , the solvent was evaporated. The residue was neutralized with 10% aq. HCl solution, and extracted with dichloromethane $(300 \mathrm{~mL})$. Then the organic layer was washed with water, dried over anhydrous MgSO_{4}, and concentrated. The residue was recrystallized from hexane to give $\mathbf{6 a}(3.50 \mathrm{~g}$, $6.3 \mathrm{mmol}, 63 \%$), $\mathrm{mp} \mathrm{222-224}{ }^{\circ} \mathrm{C}$ (Found: C, 69.18; H, 9.62. $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{~S}_{2} \mathrm{Si}_{2}$ required $\left.\mathrm{C}, 69.00 ; \mathrm{H}, 9.41 \%\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $-0.26\left(18 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right), 1.29\left(4 \mathrm{H}, \mathrm{s}, \mathrm{TMSCH}_{2}\right), 1.32(18 \mathrm{H}, \mathrm{s}$, t-Bu), $3.53\left(4 \mathrm{H}, \mathrm{d},{ }^{2} J=14 \mathrm{~Hz}\right.$, bridge), $3.60\left(4 \mathrm{H}, \mathrm{d},{ }^{2} J=14 \mathrm{~Hz}\right.$, bridge), $7.24\left(4 \mathrm{H}, \mathrm{s}\right.$, arom. H); $m / z: 556\left(\mathrm{M}^{+}\right)$.

The same procedure was used for $\mathbf{6 b} ; \mathbf{4}(4.76 \mathrm{~g}, 15 \mathrm{mmol})$ and $\mathbf{5 b}(3.61 \mathrm{~g}, 15 \mathrm{mmol})$ afforded $\mathbf{6 b}(4.5 \mathrm{~g}, 9.3 \mathrm{mmol}, 62 \%), \mathrm{mp}$ 204-206 ${ }^{\circ} \mathrm{C}$ (hexane) (Found: C, 71.85; H, 9.14. $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~S}_{2} \mathrm{Si}$ required $\mathrm{C}, 71.84 ; \mathrm{H}, 9.15 \%) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.27$ $\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right), 1.27(2 \mathrm{H}, \mathrm{m}, \mathrm{TMSCH}), 1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.32(9 \mathrm{H}, \mathrm{m}, t-\mathrm{Bu}), 1.34(9 \mathrm{H}, \mathrm{m}, t-\mathrm{Bu}), 3.57-3.67(8 \mathrm{H}, \mathrm{m}$, bridge), $7.23(2 \mathrm{H}, \mathrm{s}$, arom. H), $7.30(2 \mathrm{H}, \mathrm{s}$, arom. H); m/z: 484 $\left(\mathrm{M}^{+}\right)$.

[2.2]Metacyclophanes 7 by Wittig rearrangement of dithia[3.3]metacyclophanes 6

Using a syringe, $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $9.5 \mathrm{~mL}, 15 \mathrm{mmol})$ was added to a stirred solution of dithia[3.3]metacyclophane $\mathbf{6 a}$ ($1.67 \mathrm{~g}, 3 \mathrm{mmol}$) in dry THF (16.5 mL) under an argon atmosphere at $0^{\circ} \mathrm{C}$. After the reaction mixture was stirred at room temperature for 2 h , methyl iodide ($0.93 \mathrm{~mL}, 15 \mathrm{mmol}$) was added and the reaction mixture was stirred for 30 min . Then the mixture was poured into ice-water, and extracted with dichloromethane $(100 \mathrm{~mL})$. The extract was washed with water, dried over anhydrous MgSO_{4}, and concentrated. The residue was chromatographed over silica gel using dichloromethane as eluant. The product was recrystallized from hexane to give mixed isomers of $7 \mathrm{a}(1.35 \mathrm{~g}, 2.3 \mathrm{mmol}, 78 \%), \mathrm{mp} 220-224^{\circ} \mathrm{C}$ (Found: C, 69.71; H, 9.69. $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{~S}_{2} \mathrm{Si}_{2}$ required C, $69.77 ; \mathrm{H}$, $9.65 \%) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.46$ to $-0.38\left(18 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{3}-\right.$ $\mathrm{Si}), 0.72-0.88\left(4 \mathrm{H}, \mathrm{m}, \mathrm{TMSCH}_{2}\right), 1.26-1.43(18 \mathrm{H}, \mathrm{m}, t-\mathrm{Bu})$, 2.19-2.23 ($6 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{3}$), 2.53-2.66 ($4 \mathrm{H}, \mathrm{m}$, bridge), $4.04-$ $4.19(2 \mathrm{H}, \mathrm{m}$, bridge), 7.04-7.19 ($2 \mathrm{H}, \mathrm{m}$, arom. H), 7.66-7.68 ($2 \mathrm{H}, \mathrm{m}$, arom. H); m/z: $584\left(\mathrm{M}^{+}\right)$.

The same procedure was used for $\mathbf{7 b}$; $\mathbf{6 a}(1.45 \mathrm{~g}, 3.0 \mathrm{mmol})$ gave $\mathbf{7 b}(890 \mathrm{mg}, 1.7 \mathrm{mmol}, 58 \%)$, as colorless prisms (hexane), $\mathrm{mp} 199-204{ }^{\circ} \mathrm{C}$ (Found: C, $72.90 ; \mathrm{H}, 9.61 . \mathrm{C}_{31} \mathrm{H}_{48} \mathrm{~S}_{2} \mathrm{Si}_{1}$ required C, $72.59 ; \mathrm{H}, 9.43 \%) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.46$ to $-0.43(9 \mathrm{H}$, $\left.\mathrm{m},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right), 0.65-0.67\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 0.86-0.91(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{TMSCH}_{2}\right), 1.25-1.43(18 \mathrm{H}, \mathrm{m}, t-\mathrm{Bu}), 2.14-2.23(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{SCH}_{3}\right), 2.56-2.71(2 \mathrm{H}, \mathrm{m}$, bridge), 3.04-3.21 ($2 \mathrm{H}, \mathrm{m}$, bridge), 4.00-4.19 ($2 \mathrm{H}, \mathrm{m}$, bridge), 7.04-7.19 ($2 \mathrm{H}, \mathrm{m}$, arom. H), 7.687.81 ($2 \mathrm{H}, \mathrm{m}$, arom. H); m/z: $512\left(\mathrm{M}^{+}\right)$.

2,7-Di-tert-butyl-trans-10b,10c-bis(trimethylsilylmethyl)-10b,10c-dihydropyrene 9a, 2,7-di-tert-butyl-trans-10b-trimethyl-silylmethyl-10c-methyl-10b,10c-dihydropyrene 9b

A solution of boron trifluoride diethyl ether complex (7.3 mL , 56 mmol) in dichloromethane (6 mL) was added to trimethyl orthoformate ($5.5 \mathrm{~mL}, 50 \mathrm{mmol}$) at $-30^{\circ} \mathrm{C}$ under an argon atmosphere. After the reaction mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$, it was cooled to $-30^{\circ} \mathrm{C}$, and the mixed isomers 7 a (700 $\mathrm{mg}, 1.2 \mathrm{mmol}$) in dichloromethane (5 mL) were added under stirring at $-30^{\circ} \mathrm{C}$. After the mixture was stirred for another 3 h at $-30^{\circ} \mathrm{C}$, ethyl acetate (5 mL) was added to dissolve excess methylating agent, and the mixture was stirred for a further 3 h . Then the white precipitate was collected and dried to give $\mathbf{8 a}$ ($0.86 \mathrm{~g}, 1.1 \mathrm{mmol}, 91 \%$), mp $285-287^{\circ} \mathrm{C}$ decomp (Found: C, 54.59 ; H, 7.72. $\mathrm{C}_{36} \mathrm{H}_{62} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{~S}_{2} \mathrm{Si}_{2}$ required C, 54.82 ; $\mathrm{H}, 7.92 \%$); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)-0.37\left(18 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right), 0.60-1.06$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{TMSCH}_{2}\right), 1.29-1.32(18 \mathrm{H}, \mathrm{m}, t-\mathrm{Bu}), 2.92-3.00(12 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{S}\left(\mathrm{CH}_{3}\right)_{2}{ }^{+}\right)$, 3.28-3.37 ($4 \mathrm{H}, \mathrm{m}$, bridge), 4.89-4.99 $(2 \mathrm{H}, \mathrm{m}$, bridge), 7.28-7.51 ($4 \mathrm{H}, \mathrm{m}$, arom. H).

The same procedure was used for $\mathbf{8 b}$; $7 \mathbf{b}$ ($850 \mathrm{mg}, 1.7 \mathrm{mmol}$) gave $\mathbf{8 b}(860 \mathrm{mg}, 1.2 \mathrm{mmol}, 71 \%)$ as colorless prisms (hexane), $\mathrm{mp} 231-234^{\circ} \mathrm{C}$ decomp. $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right)-0.44$ to $-0.39\left(9 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right), 0.73-0.79\left(5 \mathrm{H}, \mathrm{m}, \mathrm{TMSCH}_{2}, \mathrm{CH}_{3}\right)$, $1.28-1.32(18 \mathrm{H}, \mathrm{m}, t-\mathrm{Bu}), 2.92\left(12 \mathrm{H}, \mathrm{s}, \mathrm{S}\left(\mathrm{CH}_{3}\right)_{2}{ }^{+}\right), 3.26-3.35$ ($4 \mathrm{H}, \mathrm{m}$, bridge), 4.01-4.04 ($2 \mathrm{H}, \mathrm{m}$, bridge), $7.29-7.60(4 \mathrm{H}, \mathrm{m}$, arom. H).

This material was used without further purification to prepare 9. Potassium tert-butoxide ($270 \mathrm{mg}, 2.4 \mathrm{mmol}$) was added to a stirred solution of salt $\mathbf{8 a}(370 \mathrm{mg}, 0.47 \mathrm{mmol})$ in dry THF $(36 \mathrm{~mL})$ under an argon atmosphere. The reaction mixture was stirred for 15 min . Then benzene (20 mL) was added and the mixture was acidified with dilute aq. HCl solution. The layers were separated and the aqueous layer was further extracted with benzene. The combined extracts were washed with water, dried over anhydrous MgSO_{4}, and concentrated. The residue was chromatographed over silica gel using hexane as eluant to give 9 ($120 \mathrm{mg}, 0.25 \mathrm{mmol}, 52 \%$) as deep brown prisms (hexane), mp 156-157 ${ }^{\circ} \mathrm{C}$ (Found: C, 78.27; H, 9.85. $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{Si}_{2}$ required $\mathrm{C}, 78.62 ; \mathrm{H}, 9.90 \%$); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.18$
$\left(4 \mathrm{H}, \mathrm{s}, \mathrm{TMSCH}_{2}\right),-0.98\left(18 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right), 1.68(18 \mathrm{H}, \mathrm{s}$, $t-\mathrm{Bu}), 8.32(4 \mathrm{H}, \mathrm{br}$ s, arom. H), $8.47(4 \mathrm{H}, \mathrm{br} \mathrm{s}$, arom. H); m/z: $488\left(\mathrm{M}^{+}\right)$.
The same procedure was used for $\mathbf{9 b} ; \mathbf{8 b}(200 \mathrm{mg}, 0.28 \mathrm{mmol})$ gave 9b ($68 \mathrm{mg}, 0.16 \mathrm{mmol}, 58 \%$) as deep brown prisms (hexane), mp 142-146 ${ }^{\circ} \mathrm{C}$ (Found: C, 83.52; H, 9.86. $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{Si}$ required $\mathrm{C}, 83.59 ; \mathrm{H}, 9.67 \%)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-4.22$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{TMSCH}_{2}\right),-4.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right),-0.95\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}-\right.$ Si), $1.69(18 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}), 8.39(4 \mathrm{H}, \mathrm{br}$ s, arom. H), $8.47(2 \mathrm{H}, \mathrm{br}$ s , arom. H), $8.53\left(2 \mathrm{H}\right.$, br s, arom. H); $m / z: 416\left(\mathrm{M}^{+}\right)$.

X-Ray crystal structure determination of $\mathbf{9 a} \ddagger$

Crystal data. $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{Si}_{2}, M=488.88$, triclinic, $a=9.537$ (1) \AA, $b=9.828(2) \AA, c=9.090(1) \AA, a=115.50(1)^{\circ}, \beta=97.54(1)^{\circ}$, $\gamma=89.19(1)^{\circ}, V=761.5(2) \AA^{3}$, (by least-squares refinement on diffractometer angles for 25 automatically centered reflections, $\lambda=1.54184 \AA$), space group $P \overline{1}$ (No. 2), $Z=1$ (special position), $D_{\mathrm{x}}=1.066 \mathrm{~g} \mathrm{~cm}^{-3}$, deep brown prism, crystal size $0.20 \times 0.15 \times 0.10 \mathrm{~mm}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=1.162 \mathrm{~mm}^{-1}$.

Data collection and processing. Intensity data were measured on a CAD4 FR590 diffractometer, ω - 2θ mode with ω scan width $=0.6+0.410 \tan \theta$, scan speed 2 to $20 \mathrm{deg} \mathrm{min}^{-1}$ and graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation; 2760 reflections were measured ($\left.4.68 \leq \theta \leq 64.94^{\circ}, \pm h,-k, \pm l\right) .2592$ unique reflections [merging $R=0.0753$ after absorption correction (max, min transmission factor $=0.9681,0.9455$)], linear and approximate isotopic crystal decay, ca. -1.0% corrected during procedure.

Structure analysis and refinement. The structure was solved by the direct method (SIR92). ${ }^{11}$ Full-matrix least-squares refinement on F^{2} was performed with all non-hydrogen atoms anisotropic and hydrogens in calculated positions with $U_{\text {iso }}=$ $1.3 U_{\text {(bonded atoms) }}$. The weighting scheme is $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+\right.$ $\left.(0.1687 P)^{2}+26.0206 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$. Final R and R_{w} values are $0.0454,0.1171$ (refined on F^{2}). All calculations were performed on a MicroVAX3100 and IBM RISC System/ 60003100 using MolEN ${ }^{12}$ and SHELXL-93. ${ }^{13}$

X-Ray crystal structure determination of 9b

Crystal data. $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{Si}_{1}, \quad M=426.70$, monoclinic, $a=$ 20.586(18) $\AA, b=13.153(6) \AA, c=19.186(8) \AA, \beta=93.23(5)^{\circ}$, $V=5186.7(56) \AA^{3}$, (by least-squares refinement on diffractometer angles for 25 automatically centered reflections, $\lambda=$ $1.54184 \AA$), space group $P 2_{1} / n$ (No. 14), $Z=8, D_{\mathrm{x}}=1.067 \mathrm{~g}$ cm^{-3}, deep brown prism, crystal size $0.20 \times 0.20 \times 0.03 \mathrm{~mm}$, $\mu(\mathrm{Cu}-\mathrm{K} \alpha)=0.864 \mathrm{~mm}^{-1}$.

Data collection and processing. Intensity data were measured on a CAD4 FR590 diffractometer, ω - 2θ mode with ω scan width $=1.4+0.270 \tan \theta$, scan speed 4 to $20 \mathrm{deg} \mathrm{min}{ }^{-1}$ and graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation; 6077 reflections were measured ($\left.3.99 \leq \theta \leq 52.38^{\circ},+h,+k, \pm l\right) .5876$ unique reflections [merging $R=0.1637$ after absorption correction (max, min transmission factor $=0.9990,0.6407$)], linear and approximate isotopic crystal decay, $c a .-0.01 \%$ corrected during procedure.

Structure analysis and refinement. The structure was solved by the direct method (SIR92). ${ }^{11}$ Full-matrix least-squares
\ddagger Full crystallographic details, excluding structure factor tables, have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details of the deposition scheme, see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. 1, available via the RSC Web page (http://www.rsc.org/authors). Any request to the CCDC for this material should quote the full literature citation and the reference number 207/296. See http://www.rsc.org/suppdata/p1/1999/403/ for crystallographic files in .cif format.
refinement on F^{2} was performed with all non-hydrogen atoms anisotropic and hydrogens in calculated positions with $U_{\text {iso }}=$ $1.3 U_{\text {(bonded atoms) }}$. The weighting scheme is $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+\right.$ $\left.(0.1687 P)^{2}+26.0206 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$. Final R and R_{w} values are $0.0917,0.2042$ (refined on F^{2}). The large R value seems to be due to the rotation of the tert-butyl groups. All calculations were performed on a MicroVAX3100 and IBM RISC System/6000 3100 using MolEN ${ }^{12}$ and SHELXL-93. ${ }^{13}$

References

1 R. H. Mitchell, Y. Chen, V. S. Iyer, D. Y. K. Lau, K. K. Baldridge and J. S. Siegel, J. Am. Chem. Soc., 1996, 118, 2907.
2 R. H. Mitchell, V. S. Iyer, N. Khalifa, R. Mahadevan, S. Venugopalan, S. A. Weerawarna and P. Zhou, J. Am. Chem. Soc., 1995, 117, 1514.
3 R. H. Mitchell, Adv. Theor. Interesting Mol., 1989, 1, 135.

4 R. H. Mitchell and W. Anker, Tetrahedron Lett., 1981, 22, 5139.
5 A. W. Hanson, Acta Crystallogr., 1967, 23, 476.
6 N. Shimizu, Rev. Heteroatom Chem., 1993, 9, 155.
7 D. J. Ager, Synthesis, 1984, 384.
8 A. W. Hanson, Acta Crystallogr., 1965, 18, 599.
9 R. V. Williams, W. D. Edward, A. Vij, R. W. Tolbert and R. H. Mitchell, J. Org. Chem., 1998, 63, 3125.
10 M. Tashiro and T. Yamato, J. Am. Chem. Soc., 1982, 104, 3701.
11 SIR92: M. C. Altomare, M. Burla, G. Camalli, C. Cascarano, A. Giacovazzo, G. Guagliardi and J. Polidori, J. Appl. Crystallogr., 1994, 27, 435.
12 MolEN: An Interactive Structure Solution Procedure, Enraf-Nonius, Delft, The Netherlands (1990).
13 SHELXL-93: G. M. Sheldrick, University of Göttingen, Germany, (1993).

